Let $a,b,c$ be positive integers , such that $A=\frac{a^2+1}{bc}+\frac{b^2+1}{ca}+\frac{c^2+1}{ab}$ is, also, an integer. Proof that $\gcd( a, b, c)\leq\lfloor\sqrt[3]{a+ b+ c}\rfloor$.
Source:
Tags: inequalities, number theory
Let $a,b,c$ be positive integers , such that $A=\frac{a^2+1}{bc}+\frac{b^2+1}{ca}+\frac{c^2+1}{ab}$ is, also, an integer. Proof that $\gcd( a, b, c)\leq\lfloor\sqrt[3]{a+ b+ c}\rfloor$.