Problem

Source: Chinese TST

Tags: algorithm, induction, geometry proposed, geometry



Prove that in a plane, arbitrary $ n$ points can be overlapped by discs that the sum of all the diameters is less than $ n$, and the distances between arbitrary two are greater than $ 1$. (where the distances between two discs that have no common points are defined as that the distances between its centers subtract the sum of its radii; the distances between two discs that have common points are zero)