Problem

Source: Czech-Polish-Slovak Junior Match 2016, individual p1 CPSJ

Tags: geometry, area, max, perpendicular



Let $AB$ be a given segment and $M$ be its midpoint. We consider the set of right-angled triangles $ABC$ with hypotenuses $AB$. Denote by $D$ the foot of the altitude from $C$. Let $K$ and $L$ be feet of perpendiculars from $D$ to the legs $BC$ and $AC$, respectively. Determine the largest possible area of the quadrilateral $MKCL$. Czech Republic