Let $A_1A_2 ...A_{360}$ be a regular $360$-gon with centre $S$. For each of the triangles $A_1A_{50}A_{68}$ and $A_1A_{50}A_{69}$ determine, whether its images under some $120$ rotations with centre $S$ can have (as triangles) all the $360$ points $A_1, A_2, ..., A_{360}$ as vertices.
Problem
Source: Czech-Polish-Slovak Match Junior 2019, team p5 CPSJ
Tags: geometry, geometric transformation, rotation, combinatorial geometry, combinatorics