Given is a cyclic quadrilateral $ABCD$. Points $K, L, M, N$ lying on sides $AB, BC, CD, DA$, respectively, satisfy $\angle ADK=\angle BCK$, $\angle BAL=\angle CDL$, $\angle CBM =\angle DAM$, $\angle DCN =\angle ABN$. Prove that lines $KM$ and $LN$ are perpendicular.
Problem
Source: Czech-Polish-Slovak Match Junior 2019, team p6 CPSJ
Tags: cyclic quadrilateral, perpendicular, geometry