Problem

Source: Czech-Polish-Slovak Match Junior 2019, individual p4 CPSJ

Tags: geometry, similar triangles



Let $k$ be a circle with diameter $AB$. A point $C$ is chosen inside the segment $AB$ and a point $D$ is chosen on $k$ such that $BCD$ is an acute-angled triangle, with circumcentre denoted by $O$. Let $E$ be the intersection of the circle $k$ and the line $BO$ (different from $B$). Show that the triangles $BCD$ and $ECA$ are similar.