Problem

Source: IMO ShortList 1999, algebra problem 6

Tags: matrix, algebra, binomial coefficients, counting, combinatorics, IMO Shortlist



For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions: - place out the numbers in some order in a ring; - delete one of the numbers from the ring; - if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace Afterwards start again with the step (2). Show that the largest sum $S$ which can result in this way is given by the formula \[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\ [\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]


Attachments: