Problem

Source: 8th European Mathematical Cup, Junior Category, Q2

Tags: inequalities, algebra



Let $(x_n)_{n\in \mathbb{N}}$ be a sequence defined recursively such that $x_1=\sqrt{2}$ and $$x_{n+1}=x_n+\frac{1}{x_n}\text{ for }n\in \mathbb{N}.$$Prove that the following inequality holds: $$\frac{x_1^2}{2x_1x_2-1}+\frac{x_2^2}{2x_2x_3-1}+\dotsc +\frac{x_{2018}^2}{2x_{2018}x_{2019}-1}+\frac{x_{2019}^2}{2x_{2019}x_{2020}-1}>\frac{2019^2}{x_{2019}^2+\frac{1}{x_{2019}^2}}.$$ Proposed by Ivan Novak