Find all pairs of positive integers $(m, n)$ such that $$m^n * n^m = m^m + n^n$$
Problem
Source: https://drive.google.com/file/d/1OzcOBEZZMCgCeiDLLjyRbK0KkwN4207F/view
Tags: number theory, IMOC
24.12.2019 23:56
Let $m \geq n$ $m^n | m^m+n^n \to m^n |n^n \to m=n$ $m^{2m}=2m^m$ there are not solutions.
04.10.2021 01:08
Taking mod n on the diophane we have: $$m \equiv 0 \pmod n$$And taking mod m on the diophane we have: $$n \equiv 0 \pmod m$$Thus $n=m$ and now replacing on the diophane we have $n^n=2$ which is a contradiction, thus we have no sols. And we are done
04.10.2021 13:17
MathLuis wrote: Taking mod n on the diophane we have: $$m \equiv 0 \pmod n$$And taking mod m on the diophane we have:
No.
04.10.2021 18:50
@above,why?
04.10.2021 21:28
@above Because $m^m\equiv 0\mod n$ does not imply $m\equiv 0\mod n$.
03.01.2022 11:14
$$where is N3$$
04.01.2022 07:33
$m$ and $n$ have the same prime divisors. W.L.O.G $m\ge n$ If p is a prime number, $v_p(m)\ge v_p(n)+1$ $v_p(m^m + n^n)=v_p(n^n)=nv_p(n)=v_p(m^n * n^m)=mv_p(n)+nv_p(m)$ contradiction. $$m=n$$not solutions.