Problem

Source: Rioplatense Olympiad L3 2019

Tags: algebra, number theory



Let $\alpha>1$ be a real number such that the sequence $a_n=\alpha\lfloor \alpha^n\rfloor- \lfloor \alpha^{n+1}\rfloor$, with $n\geq 1$, is periodic, that is, there is a positive integer $p$ such that $a_{n+p}=a_n$ for all $n$. Prove that $\alpha$ is an integer.