Problem

Source: Rioplatense Olympiad L3 2019

Tags: number theory



Prove that there are infinite triples $(a,b,c)$ of positive integers $a,b,c>1$, $gcd(a,b)=gcd(b,c)=gcd(c,a)=1$ such that $a+b+c$ divides $a^b+b^c+c^a$.