Let $ n$ be a positive integer. Find all $ x_1,x_2,\ldots,x_n$ that satisfy the relation:
\[ \sqrt{x_1-1}+2\cdot \sqrt{x_2-4}+3\cdot \sqrt{x_3-9}+\cdots+n\cdot\sqrt{x_n-n^2}=\frac{1}{2}(x_1+x_2+x_3+\cdots+x_n).\]
By AM-GM inequality ,
$ \frac{(k^2) + (x_k - k^2 )}{2} >= k \sqrt {(x_k - k^2)}$
$ => \frac{x_k }{ 2} >= k \sqrt {(x_k - k^2)}$
Sum this for all values of k we get the given expression , with the equality sign.
This means that equality holds for each equation.
Equality holds for AM-GM inequality when , the 2 numbers are equal
So $ k^2 = x_k - k^2$
$ x_k =2 k^2$