From the vertex $ A$ of the equilateral triangle $ ABC$ a line is drown that intercepts the segment $ [BC]$ in the point $ E$. The point $ M \in (AE$ is such that $ M$ external to $ ABC$, $ \angle AMB = 20 ^\circ$ and $ \angle AMC = 30 ^ \circ$. What is the measure of the angle $ \angle MAB$?
Problem
Source: Moldovian NMO 2008, 9th Grade, Problem 3
Tags: trigonometry, geometry, circumcircle, trig identities, Law of Sines, geometry unsolved
26.03.2008 16:22
M stay on a circle with radius AB and center B 'cause $ \angle ABC = 2\angle AMC$. So $ \triangle BMA$ is an isosceles triangle and $ \angle MAB = \angle BMA = 20$ But it seems too simple
26.03.2008 18:21
Nope that' the answer
28.03.2008 01:27
The solution of ¬[ƒ(Gabriel)³²¹º]¼ is not tru. Because if $ \angle MAB = 20^0$ $ \Longrightarrow$ the suggestion. $ \bullet$ $ \angle KBC =\angle CBM = 30^0$ $ \Longrightarrow$ $ BKCM$ is circums cribed quadriangle. $ \bullet$ if $ \angle MAB = 20^0$ $ \Longrightarrow$ $ \angle BKM = 130^0$ but $ \angle BKM = \angle MCB$ $ \Longrightarrow$ $ \angle MCB = 130^0$. But $ \angle MCB + \angle MBC = 130^0$ $ \Longrightarrow$ the suggestion. real $ \angle MAB > 20^0$
Attachments:

28.03.2008 01:38
Real $ \angle MAB > 20^0$ Who can fine it. I will try and post it soon.
28.03.2008 02:49
thanhnam2902 wrote: $ \bullet$ if $ \angle MAB = 20^0$ $ \Longrightarrow$ $ \angle BKM = 130^0$ Recheck that statement.
28.03.2008 03:17
thanhnam2902 on your drawing where exactly is point M? i assume it's at the second A, but it makes your solution hard to follow
29.03.2008 00:47
let $ \angle MAB=\alpha$, then $ \angle MAC=60-\alpha, \angle BMA=100-\alpha, \angle BCM=30+\alpha$. from law of sines we can get $ \sin \alpha\cdot \sin 20\cdot \sin 30\cdot \sin 60=\sin(60-\alpha)\cdot\sin 60\cdot \sin (100-\alpha)\cdot \sin (30+\alpha)$ this can be rewritten as $ \sin \alpha\sin 20=\sin(2\alpha+60)\sin(100-\alpha)$ or $ \cos(\alpha-20)-\cos(\alpha+20)=\cos(3\alpha-40)-\cos(\alpha+160)$ since $ \cos(\alpha-20)+\cos(\alpha+160)=0$, it follows that $ \cos(\alpha+20)+\cos(3\alpha-40)=0$, from where it's easy to conclude that $ \alpha=50$
29.03.2008 00:57
let $ D$ be on line $ BC$ such that $ B$ lies between $ C$ and $ D$, and $ AB = BD$. since $ \angle ADC = \angle AMC = 30$ it follows that $ ADMC$ is cyclic. let $ O$ be the circumcenter of $ ADMC$. note that $ \angle AOC = 2\angle AMC = 60 = \angle ABC$, so $ A,B,O,C$ are cyclic. note that $ \angle AOD = 2\angle ACD = 120 = \angle ABD$, so $ A,O,B,D$ are cyclic. since the circumcircles of $ A,B,O,C$ and $ A,O,B,D$ cannot coincide it follows that $ B = O$, from where it follows easily that $ \angle BAM = 50$ edit: there's a much more easier solution... $ \angle CAD=90$, and since $ B$ is the midpoint of $ CD$ it follows that $ B$ is the circumcenter of $ ACD$, from where we conclude that $ B=O$... the rest follows easily..
29.03.2008 05:39
Sory! My picture is wrong, solution of campos is very nice. Thank you very much.
29.03.2008 05:52
Oh! Problem of Valentin Vornicu is very nice. Thanh you very much!
29.03.2008 15:33
Actually this year where proposed very weak problems for 9th grade.This is also an easy one.
30.03.2008 00:01
campos wrote: from law of sines we can get $ \sin \alpha\cdot \sin 20\cdot \sin 30\cdot \sin 60 = \sin(60 - \alpha)\cdot\sin 60\cdot \sin (100 - \alpha)\cdot \sin (30 + \alpha)$ can you explain this ? thank you !
30.03.2008 13:13
I think you solution {CAMPOS} is right but yor result is wrong <<angle BAM=20>> I solve this problem with Ceve theorem . (angle BAM=x) sin(60-x)/sin(x) * sin(160-x)/sin(100-x) * sin(30+x)/sin(90+x) =1 & we now sin(60-x)=cos(30+x) & sin(90+x)= cos(x) & cos(30+x) * sin(30+x)=1/2 * sin(60+x) & cos(x) * sin(x)=1/2 * sin(2x) & sin(160-x)=sin(20+x) & sin(100-x)=sin(80+x) then we have sin(60+x) * sin(20+x) =sin(2x) * sin(80+x) then we have cos(40+x)=cos(80-x) then x=20
31.03.2008 23:18
Atention, I modified the enunciation giving a degree of freedom to the point $ M$ ! Valentin Vornicu wrote: Let $ ABC$ be a equilateral triangle and let $ M$ be a point for which the line $ BC$ separates the points $ A$ , $ M$ and $ \{\begin{array}{c} m(\widehat {AMB}) = 20^{\circ} \\ \ m(\widehat {AMC}) = 30^{\circ}\end{array}$ . Ascertain $ m(\widehat {MAB})$ . Remark. Denote $ E\in BC\cap AM$ . CAUTION ! Appear two cases : $ E\in (BC)$ or $ B\in (EC)$ . Proof I. Denote the point $ N\in BC$ for which $ B\in (NC)$ and $ BN = BC$ . Observe that $ M(\widehat {ANC}) = m(\widehat {AMC}) = 30^{\circ}$ . Thus, $ ANMC$ is inscribed in the circle with the center $ B$ . Hence $ BM = BA$ , i.e. $ m(\widehat {MAB}) = m(\widehat {AMB}) = 20^{\circ}$ . Proof II. $ \{\begin{array}{c} m(\widehat {BAC}) = m(\widehat {ACB}) = m(\widehat {CBA}) = 60 \\ \ m(\widehat {CMA}) = 30\ \ ,\ \ m(\widehat {AMB}) = 20\end{array}$ . Denote $ m(\widehat {BAM}) = x$ . Case $ 1\blacktriangleright\ E\in (BC)$ . Observe that $ \{\begin{array}{c} m(\widehat {MAC}) = 60 - x \\ \ m(\widehat {BCM}) = 30 + x \\ \ m(\widehat {MBC}) = 100 - x\end{array}$ . Apply the well-known property in the quadrilateral $ ABMC$ : $ \boxed {\boxed {\ \begin{array}{c} \\ \ \sin\widehat {BAM}\cdot\sin\widehat {MBC}\cdot\sin\widehat {CMA}\cdot\sin\widehat {ACB} = \sin\widehat {MAC}\cdot\sin\widehat {CBA}\cdot\sin\widehat {AMB}\cdot\sin\widehat {BCM} \\ \\ \sin x\sin (100 - x)\sin 30\sin 60 = \sin (60 - x)\sin 60\sin 20\sin (30 + x) \\ \\ \sin x\sin (80 + x) = 2\cos (30 + x)\sin 20\sin (30 + x) \\ \\ \sin x\cos (10 - x) = \sin 20\sin (60 + 2x) \\ \\ \sin x\cos (10 - x) = \sin 20\cos (30 - 2x) \\ \\ \sin 10 + \sin (2x - 10) = \sin (50 - 2x) + \sin (2x - 10) \\ \\ \sin 10 = \sin (50 - 2x) \\ \\ 10 = 50 - 2x\ \ \vee\ \ 10 + (50 - 2x) = 180 \\ \\ x = 20\ \ \vee\ \ x = - 60\not\in \\ \\ \boxed {\ x = 20\ } \\ \\ \end{array}\ }}$ Case $ 2\blacktriangleright\ B\in (EC)$ . Observe that $ m(\widehat {BCM}) = 30 - x$ and $ m(\widehat {BMC}) = 10$ . Apply the trigonometrical form of the Ceva's theorem to the interior point $ B$ for the triangle $ AMC$ : $ \boxed {\boxed {\ \begin {array}{c} \\ \ \sin\widehat {BAM}\cdot\sin\widehat {BMC}\cdot\sin\widehat {BCA} = \sin\widehat {BAC}\cdot\sin\widehat {BMA}\cdot\sin\widehat {BCM} \\ \\ \sin x\sin 10\sin 60 = \sin 60\sin 20\sin (30 - x) \\ \\ \sin x\sin 10 = \sin 20\sin (30 - x) \\ \\ \cos (x - 10) - \cos (x + 10) = \cos (x - 10) - \cos (50 - x) \\ \\ \cos (x + 10) = \cos (50 - x) \\ \\ x + 10 = 50 - x \\ \\ \boxed {\ x = 20\ } \\ \\ \end{array}\ }}$ Virgil Nicula wrote: An easy extension. Let $ ABC$ be an $ B$ - isosceles triangle, i.e. $ BA = BC$ and let $ M$ be a point for which the line $ BC$ separates the points $ A$ , $ M$ and $ m(\widehat {AMC}) = 90^{\circ} - m(\widehat {BAC})$ . Prove that $ \widehat {AMB}\equiv\widehat {BAM}$ . Proof . Let $ N\in BC$ for which $ B\in (NC)$ and $ BN = BC$ . Observe that $ m(\widehat {ANC}) = m(\widehat {AMC}) = 90^{\circ} - m(\widehat {BAC})$ . Thus, $ ANMC$ is inscribed in the circle with the center $ B$ . Hence $ BM = BA$ , i.e. $ \widehat {AMB}\equiv\widehat {BAM}$ . Remark. Now you can generate and another similar problems !
31.03.2008 23:58
Thank you M. Nicula ! Multsam fain ! Your proof is of a "biblical" simplicity ! I've made a figure for Proof 1 to thank you again !
Attachments:

