Problem

Source: Moldovian NMO 2008, 9th Grade, Problem 2

Tags: algebra unsolved, algebra



Find $ f(x): (0,+\infty) \to \mathbb R$ such that \[ f(x)\cdot f(y) + f(\frac{2008}{x})\cdot f(\frac{2008}{y})=2f(x\cdot y)\] and $ f(2008)=1$ for $ \forall x \in (0,+\infty)$.