Problem

Source: Moldovian NMO 2008, 9th Grade, Problem 1

Tags: quadratics, parameterization, algebra, quadratic formula, algebra unsolved



Let $ f_m: \mathbb R \to \mathbb R$, $ f_m(x)=(m^2+m+1)x^2-2(m^2+1)x+m^2-m+1,$ where $ m \in \mathbb R$. 1) Find the fixed common point of all this parabolas. 2) Find $ m$ such that the distance from that fixed point to $ Oy$ is minimal.