Problem

Source: 2019 Baltic Way P15

Tags: geometry, combinatorial geometry



Let $n \geq 4$, and consider a (not necessarily convex) polygon $P_1P_2\hdots P_n$ in the plane. Suppose that, for each $P_k$, there is a unique vertex $Q_k\ne P_k$ among $P_1,\hdots, P_n$ that lies closest to it. The polygon is then said to be hostile if $Q_k\ne P_{k\pm 1}$ for all $k$ (where $P_0 = P_n$, $P_{n+1} = P_1$). (a) Prove that no hostile polygon is convex. (b) Find all $n \geq 4$ for which there exists a hostile $n$-gon.