Problem

Source: 2019 Danube

Tags: function, Find all functions, algebra, functional equation



Find all nondecreasing functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation $$ f\left( f\left( x^2 \right) +y+f(y) \right) =x^2+2f(y) , $$for any real numbers $ x,y. $