Problem

Source: IMEO 2019, Problem 6

Tags: geometry, geometry proposed, circle intersections



Let $ABC$ be a scalene triangle with incenter $I$ and circumcircle $\omega$. The internal and external bisectors of angle $\angle BAC$ intersect $BC$ at $D$ and $E$, respectively. Let $M$ be the point on segment $AC$ such that $MC = MB$. The tangent to $\omega$ at $B$ meets $MD$ at $S$. The circumcircles of triangles $ADE$ and $BIC$ intersect each other at $P$ and $Q$. If $AS$ meets $\omega$ at a point $K$ other than $A$, prove that $K$ lies on $PQ$. Proposed by Alexandru Lopotenco (Moldova)


Attachments: