Bary bashed in 5 minutes
Point $N$ is irrelevant. All we need to do is show $AM\perp OK$ where $O$ is the circumcenter as this implies that $K$ is on the perpendicular bisector of $AN$.
Employ barycentric coordinates on reference triangle $\triangle ABC$. Set $A=(1,0,0),B=(0,1,0),C=(0,0,1)$ and let $BC=a,CA=b,AB=c$. Clearly $M=(0,\tfrac12,\tfrac12)$. Let $D=(0,t,1-t)$ since it is on $BC$. Because it also lies on the tangent at $A$, it must obey $b^2z+c^2y=0$. Plugging in $D$ gives $$b^2(1-t)+c^2(t)=0 \Rightarrow t=\frac{b^2}{b^2-c^2}$$so $D=(0,\tfrac{b^2}{b^2-c^2},\tfrac{-c^2}{b^2-c^2})$. By the parallelogram condition, $K=A+M-D=(1,\tfrac12-\tfrac{b^2}{b^2-c^2},\tfrac12-\tfrac{-c^2}{b^2-c^2})=(2b^2-2c^2-(b^2+c^2):b^2+c^2).$
To finish, we use Strong EFFT on $\overrightarrow{AM}=(-1,\tfrac12,\tfrac12)$ and $OK=(2b^2-2c^2-(b^2+c^2):b^2+c^2)$ where we set $O=\vec{0}$ and use scaled $K$. Observe, $$a^2\left(\frac{b^2+c^2}{2}-\frac{b^2+c^2}{2}\right)+b^2\left(\frac{2b^2-2c^2}{2}-b^2-c^2\right)+c^2\left(\frac{2b^2-2c^2}{2}+b^2+c^2\right)=0-b^2c^2+c^2b^2=0$$so by Strong EFFT we can conclude $AM\perp OK$ as desired.