SOLUTION
$1=(x+y)^3=x^3+3x^2y+3xy^2+y^3=$ $2+3xy(x+y)+2+3xy$, so $xy=-\frac{1}{3}$. Similarly, $1=(x+y)^2=$ $x^2+2xy+y^2=x^2+y^2-\frac{2}{3}$, so $x^2+y^2=\boxed{\frac{5}{3}}$. Lastly, $\frac{25}{9}=(x^2+y^2)^2=$ $x^4+2x^2y^2+y^4=x^4+\frac{2}{9}+y^4$, so $x^4+y^4=\boxed{\frac{23}{9}}$.