Problem

Source: International Olympiad of Metropolises 2019 Problem 5

Tags: geometry, 3D geometry, pyramid, sphere, Kvant



We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic. Tibor Bakos and Géza Kós