Problem

Source: 2019 Belarus Team Selection Test 5.1

Tags: number theory, function, algebra, polynomial



A function $f:\mathbb N\to\mathbb N$, where $\mathbb N$ is the set of positive integers, satisfies the following condition: for any positive integers $m$ and $n$ ($m>n$) the number $f(m)-f(n)$ is divisible by $m-n$. Is the function $f$ necessarily a polynomial? (In other words, is it true that for any such function there exists a polynomial $p(x)$ with real coefficients such that $f(n)=p(n)$ for all positive integers $n$?) (Folklore)