The center of the circumcircle of the acute triangle $ABC$ is $M$, and the circumcircle of $ABM$ meets $BC$ and $AC$ at $P$ and $Q$ ($P\ne B$). Show that the extension of the line segment $CM$ is perpendicular to $PQ$.
Problem
Source: Finland 2014, Problem 2
Tags: geometry, circumcircle, perpendicular
Vidush
01.09.2019 21:08
PQC=BAC=angle A.MCQ=90-A. SO QMC=90
MP8148
01.09.2019 21:18
[asy][asy]
size(8cm);
defaultpen(fontsize(10pt));
pair A = dir(130), B = dir(210), C = dir(330), M = origin, P = extension((A+C)/2,M,B,C), Q = extension((B+C)/2,M,A,C);
dot("$A$", A, dir(130));
dot("$B$", B, dir(210));
dot("$C$", C, dir(330));
dot("$Q$", Q, dir(45));
dot("$P$", P, dir(270));
dot("$M$", M, dir(315));
draw(A--B--C--cycle);
draw(circumcircle(A,B,M), dotted);
draw(A--M--B, dashed);
draw(B--Q, dotted);
draw(A--P, dotted);
[/asy][/asy]
Since $ABPMQ$ is cyclic, we must have $$\angle AQB = \angle APB = \angle AMB = 2\angle C \implies \angle CBQ = \angle CAP = \angle C,$$so triangles $BCQ$ and $ACP$ are isosceles, which implies $\overline{QM} \perp \overline{BC}$ and $\overline{PM} \perp \overline{AC}$. Thus, $M$ is the orthocenter of $\triangle CPQ$ and the conclusion follows.
Com10atorics
28.08.2020 15:22
$MA=MC$ gives $PA=PC$ so $PM\perp AC$ and similarly $QM\perp BC$ so M is the orthocenter of $\triangle CPQ$ and $CM\perp PQ$
parmenides51
07.09.2024 19:24
Let CM intersect PW at O
Let <MCB=<MBC =x,<ACM=< CAM=y,
<MAB=<ABM=z,
2x+2y+2z=180^ο
< QPC =<CAB =y+z due to cyclic ABPQ
Finally <COP=180^o - <OCP -<IPC = 180^o - (x+y+z) =180^o - 90^o = 90^o