Problem

Source: Sharygin 2005 finals 11.2

Tags: geometry, incircle, excircle, perimeter, bisects, midpoint, minimum



Convex quadrilateral $ABCD$ is given. Lines $BC$ and $AD$ intersect at point $O$, with $B$ lying on the segment $OC$, and $A$ on the segment $OD$. $I$ is the center of the circle inscribed in the $OAB$ triangle, $J$ is the center of the circle exscribed in the triangle $OCD$ touching the side of $CD$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $IJ$ on the lines $BC$ and $AD$ intersect the corresponding sides of the quadrilateral (not the extension) at points $X$ and $Y$. Prove that the segment $XY$ divides the perimeter of the quadrilateral$ABCD$ in half, and from all segments with this property and ends on $BC$ and $AD$, segment $XY$ has the smallest length.