Problem

Source: Sharygin 2005 finals 11.1

Tags: concurrent, concurrency, parallel, midpoints, geometry, circumcircle



$A_1, B_1, C_1$ are the midpoints of the sides $BC,CA,BA$ respectively of an equilateral triangle $ABC$. Three parallel lines, passing through $A_1, B_1, C_1$ intersect, respectively, lines $B_1C_1, C_1A_1, A_1B_1$ at points $A_2, B_2, C_2$. Prove that the lines $AA_2, BB_2, CC_2$ intersect at one point lying on the circle circumscribed around the triangle $ABC$.