For distinct real numbers $a_1,a_2,...,a_n$, we calculate the $\frac{n(n-1)}{2}$ sums $a_i +a_j$ with $1 \le i < j \le n$, and sort them in ascending order. Find all integers $n \ge 3$ for which there exist $a_1,a_2,...,a_n$, for which this sequence of $\frac{n(n-1)}{2}$ sums form an arithmetic progression (i.e. the dierence between consecutive terms is constant).