Two parallel chords $AB$ and $CD$ are drawn in a circle with center $O$. Circles with diameters $AB$ and $CD$ intersect at point $P$. Prove that the midpoint of the segment $OP$ is equidistant from lines $AB$ and $CD$.
Source: Sharygin 2005 finals 10.3
Tags: circles, Chords, parallel, distance, geometry
Two parallel chords $AB$ and $CD$ are drawn in a circle with center $O$. Circles with diameters $AB$ and $CD$ intersect at point $P$. Prove that the midpoint of the segment $OP$ is equidistant from lines $AB$ and $CD$.