Problem

Source: Sharygin 2005 finals 9.4

Tags: geometry, orthocenter, midpoint



Let $P$ be the intersection point of the diagonals of the quadrangle $ABCD$, $M$ the intersection point of the lines connecting the midpoints of its opposite sides, $O$ the intersection point of the perpendicular bisectors of the diagonals, $H$ the intersection point of the lines connecting the orthocenters of the triangles $APD$ and $BCP$, $APB$ and $CPD$. Prove that $M$ is the midpoint of $OH$.