Problem

Source: Gulf Mathematical Olympiad 2015 p2

Tags: geometry, angles, angle bisector, Angle Chasing



a) Let $UVW$ , $U'V'W'$ be two triangles such that $ VW = V'W' , UV = U'V' , \angle WUV = \angle W'U'V'.$ Prove that the angles $\angle VWU , \angle V'W'U'$ are equal or supplementary. b) $ABC$ is a triangle where $\angle A$ is obtuse. take a point $P$ inside the triangle , and extend $AP,BP,CP$ to meet the sides $BC,CA,AB$ in $K,L,M$ respectively. Suppose that $PL = PM .$ 1) If $AP$ bisects $\angle A$ , then prove that $AB = AC$ . 2) Find the angles of the triangle $ABC$ if you know that $AK,BL,CM$ are angle bisectors of the triangle $ABC$ and that $2AK = BL$.