On the plane are three straight lines $\ell_1, \ell_2,\ell_3$, forming a triangle, and the point $O$ is marked, the center of the circumscribed circle of this triangle. For an arbitrary point X of the plane, we denote by $X_i$ the point symmetric to the point X with respect to the line $\ell_i, i = 1,2,3$. a) Prove that for an arbitrary point $M$ the straight lines connecting the midpoints of the segments $O_1O_2$ and $M_1M_2, O_2O_3$ and $M_2M_3, O_3O_1$ and $M_3M_1$ intersect at one point, b) where can this intersection point lie?
Problem
Source: Sharygin 2005 X,XI CR 18
Tags: concurrency, concurrent, symmetry, lines, Circumcenter, geometry