Problem

Source: Sharygin 2005 X,XI CR 14

Tags: geometry, area of a triangle, areas, geometric inequality, triangle inequality, inequalities



Let $P$ be an arbitrary point inside the triangle $ABC$. Let $A_1, B_1$ and $C_1$ denote the intersection points of the straight lines $AP, BP$ and $CP$, respectively, with the sides $BC, CA$ and $AB$. We order the areas of the triangles $AB_1C_1,A_1BC_1,A_1B_1C$. Denote the smaller by $S_1$, the middle by $S_2$, and the larger by $S_3$. Prove that $\sqrt{S_1 S_2} \le S \le \sqrt{S_2 S_3}$ ,where $S$ is the area of the triangle $A_1B_1S_1$.