Problem

Source: Sharygin 2005 IX CR 13

Tags: geometry, minimum, Segment, construction



A triangle $ABC$ and two lines $\ell_1, \ell_2$ are given. Through an arbitrary point $D$ on the side $AB$, a line parallel to $\ell_1$ intersects the $AC$ at point $E$ and a line parallel to $\ell_2$ intersects the $BC$ at point $F$. Construct a point $D$ for which the segment $EF$ has the smallest length.