Problem

Source: Sharygin 2005 X-XI CR 6

Tags: geometry, area of a triangle, areas



Side $AB$ of triangle $ABC$ was divided into $n$ equal parts (dividing points $B_0 = A, B_1, B_2, ..., B_n = B$), and side $AC$ of this triangle was divided into $(n + 1)$ equal parts (dividing points $C_0 = A, C_1, C_2, ..., C_{n+1} = C$). Colored are the triangles $C_iB_iC_{i+1}$ (where $i = 1,2, ..., n$). What part of the area of the triangle is painted over?