The chords $AC$ and $BD$ of the circle intersect at point $P$. The perpendiculars to $AC$ and $BD$ at points $C$ and $D$, respectively, intersect at point $Q$. Prove that the lines $AB$ and $PQ$ are perpendicular.
Problem
Source: Sharygin 2005 VIII CR 1
Tags: geometry, Chords, perpendicular
18.08.2019 06:42
18.08.2019 11:29
pretty angle chase let $\angle DPA=\alpha$ and $\angle PQD=\beta$ now $\angle PDQ +\angle PCQ= 90+90=180$ so we have $PDQC$ is cyclic. $\angle QPD = 90-\beta$ so $\angle APF= 90 +\beta-\alpha$ now $\angle DPC =180- \alpha$ and as $PDQC$ is cyclic we have $\angle DQC=\alpha$ and so we have $\angle CQP =\angle DQC -\angle DQP= \alpha -\beta$ . Cyclicity of $PDQC$ also gives $\angle BDC \equiv\angle PDC =\angle PQC =\alpha-\beta$ and now as $ABCD$ is cyclic we conclude $\angle BDC=\angle CAB=\alpha-\beta$ and so we get $\angle PFA= 180-(\angle PAF + \angle APF)=180-(\alpha-\beta+90 +\beta-\alpha)=180-90=90$ and so we are done $\blacksquare$. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(20cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -21.78872864605096, xmax = 28.25671209404774, ymin = -17.921555613911423, ymax = 14.194219349222717; /* image dimensions */ pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); /* draw figures */ draw(circle((-1.18,1.35), 5.869310010554903), linewidth(2) + wrwrwr); draw((2.44,5.97)--(-6.162777920030094,4.45172922732797), linewidth(2) + wrwrwr); draw((0.2593201949161543,-4.3400929145758695)--(4.3098420790716805,-0.7261584589943815), linewidth(2) + wrwrwr); draw((-6.162777920030094,4.45172922732797)--(4.3098420790716805,-0.7261584589943815), linewidth(2) + wrwrwr); draw((0.2593201949161543,-4.3400929145758695)--(2.44,5.97), linewidth(2) + wrwrwr); draw((xmin, -1.1208066814548219*xmin-4.049445107477677)--(xmax, -1.1208066814548219*xmax-4.049445107477677), linewidth(2) + wrwrwr); /* line */ draw((xmin, 2.022566079748257*xmin-9.443098857196468)--(xmax, 2.022566079748257*xmax-9.443098857196468), linewidth(2) + wrwrwr); /* line */ draw((xmin, -17.627776936675154*xmin + 24.274552323705024)--(xmax, -17.627776936675154*xmax + 24.274552323705024), linewidth(2) + wrwrwr); /* line */ /* dots and labels */ dot((-1.18,1.35),dotstyle); label("$O$", (-1.0349763181360132,1.6828591641980655), NE * labelscalefactor); dot((2.44,5.97),dotstyle); label("$B$", (2.5772274098238666,6.3130475791284475), NE * labelscalefactor); dot((-6.162777920030094,4.45172922732797),dotstyle); label("$A$", (-6.026385105862392,4.76965144081832), NE * labelscalefactor); dot((0.2593201949161543,-4.3400929145758695),dotstyle); label("$C$", (0.3770669573392124,-3.9981521534115525), NE * labelscalefactor); dot((4.3098420790716805,-0.7261584589943815),dotstyle); label("$D$", (4.449005705221259,-0.3859484254516799), NE * labelscalefactor); dot((1.334813400079058,0.7447594550264622),linewidth(4pt) + dotstyle); label("$P$", (1.4607280757271763,0.993256634314817), NE * labelscalefactor); dot((1.7158810486270326,-5.97261605136056),linewidth(4pt) + dotstyle); label("$Q$", (1.8547866642318904,-5.705739370265311), NE * labelscalefactor); dot((1.052286094454999,5.725087777087222),linewidth(4pt) + dotstyle); label("$F$", (1.1980223500573668,5.984665422041187), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy]
18.08.2019 12:11
Proof Without Words
18.08.2019 12:13
Ok @below. But that's quite similar to what I did
18.08.2019 12:57
amaanmathbuddy_2006 wrote: what did i do then pls dont double post Your proof had words Also, double posting means a user is posting two consecutive posts (with probably same meaning) Also, I don't see how your proof is same as mine
18.08.2019 13:08
$PDQC$ - cyclic with diameter $PQ$. By Reim's $AB$ is parallel to touchline at $P$, so $AB \perp PQ$. edit typo. thanks amar
18.08.2019 13:15
zuss77 wrote: $PDQP$ - cyclic with diameter $PQ$. By Reim's $AB$ is parallel to touchline at $P$, so $AB \perp PQ$. Should have been posted in HSM. BTW @above it should be $PDQC$.
18.08.2019 13:16
Delta0001 wrote: Proof Without Words Delta0001 wrote: amaanmathbuddy_2006 wrote: what did i do then pls dont double post Your proof had words Also, double posting means a user is posting two consecutive posts (with probably same meaning) Also, I don't see how your proof is same as mine How can one be so much silly ! Please avoid doing that @Delta0001 ...
18.08.2019 13:16
@paramenindes has already mentioned why his problems shud be in hso
18.08.2019 13:23
Why Proof Without Words is a problem? You need just 2 second to understand it. Compare it to #3... So, please, keep doing that @Delta0001.
18.08.2019 13:43
These problems come from the Correspodence Round of the Sharygin Geometry Olympiad of 2005. At the moment they are available only in Russian, and I am translating and posting each problem in each own thread in English in aops. I do not consider them that easy to be posted in the HSM forum. They are collected in aops here.
18.08.2019 19:11
18.08.2019 19:30
sorry
18.08.2019 20:14
amaanmathbuddy_2006 wrote: Why is everybody posting the same solution again and again Be mature man. First of all, everyone has a right to post their own solution however similar it may be to any other Secondly, the nature of problem is such that most of the solutions would probably have same progress (cyclic quads, angle chase etc) So don't object to others posting their solutions
25.01.2020 22:37
04.04.2020 19:35
03.11.2020 15:11
11.07.2022 23:03
12.04.2023 07:05
2 line solution $$ QDPC is cyclic quadrilateral [\angle DQP =\angle DCP =\angle ABP ] and [\angle DPQ =\angle KPB ] $$It means $BKDQ$ Cyclic hence we are done.
14.04.2023 01:10
Let $Y$ be the antipode of $B$ with respect to the circle. Then \[2\angle APQ=2\angle CDY=\overarc{YAC}=\overarc{YAB}+\overarc{BC}=180^{\circ}+2\angle CAB,\]so $\angle APQ-\angle CAB=90^{\circ}$ which immediately finishes.