Problem

Source: China Girls Math Olympiad 2019 Day 2 P2

Tags: inequalities, algebra, China, BPSQ



Let $0\leq x_1\leq x_2\leq \cdots \leq x_n\leq 1 $ $(n\geq 2).$ Prove that $$\sqrt[n]{x_1x_2 \cdots x_n}+ \sqrt[n]{(1-x_1)(1-x_2)\cdots (1-x_n)}\leq \sqrt[n]{1-(x_1- x_n)^2}.$$