Let a$,b,c$ be sidelengths of a triangle and $m_a,m_b,m_c$ the medians at the corresponding sides. Prove that $$m_a\left(\frac{b}{a}-1\right)\left(\frac{c}{a}-1\right)+ m_b\left(\frac{a}{b}-1\right)\left(\frac{c}{b}-1\right) +m_c\left(\frac{a}{c}-1\right)\left(\frac{b}{c}-1\right)\geq 0.$$ (FYROM)