Problem

Source: CSMO 2019 Grade 10 Problem 7

Tags: geometry



Let $ABCD$ be a given convex quadrilateral in a plane. Prove that there exist a line with four different points $P,Q,R,S$ on it and a square $A’B’C’D’$ such that $P$ lies on both line $AB$ and $A’B’,$ $Q$ lies on both line $BC$ and $B’C’,$ $R$ lies on both line $CD$ and $C’D’,$ $S$ lies on both line $DA$ and $D’A’.$