Problem

Source: Balkan BMO Shortlist 2016 A2

Tags: inequalities, three variable inequality, algebra



For all $x,y,z>0$ satisfying $\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\le x+y+z$, prove that $$\frac{1}{x^2+y+z}+\frac{1}{y^2+z+x}+\frac{1}{z^2+x+y} \le 1$$