Problem

Source: Balkan BMO Shortlist 2016 A6

Tags: functional equation, function, algebra, IMO Shortlist



Prove that there is no function from positive real numbers to itself, $f : (0,+\infty)\to(0,+\infty)$ such that: $f(f(x) + y) = f(x) + 3x + yf(y)$ ,for every $x,y \in (0,+\infty)$ by Greece, Athanasios Kontogeorgis (aka socrates)