Problem

Source: Sharygin 2019 Finals Day 1 Grade 10 P1

Tags: geometry



Given a triangle $ABC$ with $\angle A = 45^\circ$. Let $A'$ be the antipode of $A$ in the circumcircle of $ABC$. Points $E$ and $F$ on segments $AB$ and $AC$ respectively are such that $A'B = BE$, $A'C = CF$. Let $K$ be the second intersection of circumcircles of triangles $AEF$ and $ABC$. Prove that $EF$ bisects $A'K$.