Let $\Gamma$ be the circumcircle of a triangle $ABC$ with $AB <BC$, and let $M$ be the midpoint from the side $AC$ . The median of side $AC$ cuts $\Gamma$ at points $X$ and $Y$ ($X$ in the arc $ABC$). The circumcircle of the triangle $BMY$ cuts the line $AB$ at $P$ ($P \ne B$) and the line $BC$ in $Q$ ($Q \ne B$). The circumcircles of the triangles $PBC$ and $QBA$ are cut in $R$ ($R \ne B$). Prove that points $X, B$ and $R$ are collinear.