Let $C_1$ and $C_2$ be tangent circles internally at point $A$, with $C_2$ inside of $C_1$. Let $BC$ be a chord of $C_1$ that is tangent to $C_2$. Prove that the ratio between the length $BC$ and the perimeter of the triangle $ABC$ is constant, that is, it does not depend of the selection of the chord $BC$ that is chosen to construct the trangle.
Problem
Source: Peru Ibero TST 2017
Tags: ratio, geometry, perimeter, tangent circles, fixed, constant