Problem

Source: Cono Sur Shortlist 2003 G4

Tags: geometry, midpoint, parallelogram



In a triangle $ABC$ , let $P$ be a point on its circumscribed circle (on the arc $AC$ that does not contain $B$). Let $H,H_1,H_2$ and $H_3$ be the orthocenters of triangles $ABC, BCP, ACP$ and $ABP$, respectively. Let $L = PB \cap AC$ and $J = HH_2 \cap H_1H_3$. If $M$ and $N$ are the midpoints of $JH$ and $LP$, respectively, prove that $MN$ and $JL$ intersect at their midpoint.