Problem

Source: Cono Sur Shortlist 2003 G1

Tags: geometry, circumcircle, equal angles, Angle Chase



Let $O$ be the circumcenter of the isosceles triangle $ABC$ ($AB = AC$). Let $P$ be a point of the segment $AO$ and $Q$ the symmetric of $P$ with respect to the midpoint of $AB$. If $OQ$ cuts $AB$ at $K$ and the circle that passes through $A, K$ and $O$ cuts $AC$ in $L$, show that $\angle ALP = \angle CLO$.