Problem

Source: KJMO 2017 p3

Tags: algebra, number theory, KJMO



Find all $n>1$ and integers $a_1,a_2,\dots,a_n$ satisfying the following three conditions: (i) $2<a_1\le a_2\le \cdots\le a_n$ (ii) $a_1,a_2,\dots,a_n$ are divisors of $15^{25}+1$. (iii) $2-\frac{2}{15^{25}+1}=\left(1-\frac{2}{a_1}\right)+\left(1-\frac{2}{a_2}\right)+\cdots+\left(1-\frac{2}{a_n}\right)$