A triangle $ABC$ with $AB < AC$ is inscribed in a circle $\omega$. Circles $\gamma_1$ and $\gamma_2$ touch the lines $AB$ and $AC$, and their centres lie on the circumference of $\omega$. Prove that $C$ lies on a common external tangent to $\gamma_1$ and $\gamma_2$.
Problem
Source: Tuymaada Olympiad 2019 junior p2
Tags: geometry, circumcircle, common tangents, circles