Problem

Source: Tuymaada 2019 p1

Tags: algebra, Sequence, inequalities



In a sequence $a_1, a_2, ..$ of real numbers the product $a_1a_2$ is negative, and to define $a_n$ for $n > 2$ one pair $(i, j)$ is chosen among all the pairs $(i, j), 1 \le i < j < n$, not chosen before, so that $a_i +a_j$ has minimum absolute value, and then $a_n$ is set equal to $a_i + a_j$ . Prove that $|a_i| < 1$ for some $i$.