Problem

Source: Danube 2013 p2

Tags: number theory, coprime, prime, divides



Let $a, b, c, n$ be four integers, where n$\ge 2$, and let $p$ be a prime dividing both $a^2+ab+b^2$ and $a^n+b^n+c^n$, but not $a+b+c$. for instance, $a \equiv b \equiv -1 (mod \,\, 3), c \equiv 1 (mod \,\, 3), n$ a positive even integer, and $p = 3$ or $a = 4, b = 7, c = -13, n = 5$, and $p = 31$ satisfy these conditions. Show that $n$ and $p - 1$ are not coprime.