Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n - 1$. Prove that we can cut the necklace to form a string, whose consecutive labels $x_1,x_2,...,x_n$ satisfy $\sum_{i=1}^{k} x_i \le k - 1$ for any $k = 1,...,n$