Problem

Source: Indian TST D1 P1

Tags: geometry, incenter



In an acute angled triangle $ABC$ with $AB < AC$, let $I$ denote the incenter and $M$ the midpoint of side $BC$. The line through $A$ perpendicular to $AI$ intersects the tangent from $M$ to the incircle (different from line $BC$) at a point $P$> Show that $AI$ is tangent to the circumcircle of triangle $MIP$. Proposed by Tejaswi Navilarekallu